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L-FUNCTIONS AND CLASS NUMBERS 
OF IMAGINARY QUADRATIC FIELDS 
AND OF QUADRATIC EXTENSIONS 

OF AN IMAGINARY QUADRATIC FIELD 

STEPHANE LOUBOUTIN 

ABSTRACT. Starting from the analytic class number formula involving its L- 
function, we first give an expression for the class number of an imaginary 
quadratic field which, in the case of large discriminants, provides us with a 
much more powerful numerical technique than that of counting the number of 
reduced definite positive binary quadratic forms, as has been used by Buell in 
order to compute his class number tables. Then, using class field theory, we will 
construct a periodic character X, defined on the ring of integers of a field K 
that is a quadratic extension of a principal imaginary quadratic field k, such 
that the zeta function of K is the product of the zeta function of k and of the 
L-function L(s, X) . We will then determine an integral representation of this 
L-function that enables us to calculate the class number of K numerically, as 
soon as its regulator is known. It will also provide us with an upper bound for 
these class numbers, showing that Hua's bound for the class numbers of imag- 
inary and real quadratic fields is not the best that one could expect. We give 
statistical results concerning the class numbers of the first 50000 quadratic ex- 
tensions of Q(i) with prime relative discriminant (and with K/Q a non-Galois 
quartic extension). Our analytic calculation improves the algebraic calculation 
used by Lakein in the same way as the analytic calculation of the class numbers 
of real quadratic fields made by Williams and Broere improved the algebraic cal- 
culation consisting in counting the number of cycles of reduced ideals. Finally, 
we give upper bounds for class numbers of K that is a quadratic extension 
of an imaginary quadratic field k which is no longer assumed to be of class 
number one. 

1. CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS 

Let k be an imaginary quadratic field with discriminant D < 0 and character 
X. The analytic class number formula for this field is 

h(k) = (k) IDL( X) 
2nr 

Knowing the functional equations satisfied by the zeta function of k and the 
Riemann zeta function, one can easily deduce the functional equation satisfied 
by their quotient L(s, X), i.e., F(s) = F( 1 - s) with 

F(s) - DI) F(s)L(2s - 1, X) = a(t)ts t, 
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with 
a>(t) d E X(n)ne nt/IDI t > 0. 

n>1 

Moreover, L(2s - 1, x) = EN>1 aNINs with aN = 0 whenever N $A n2 

and aN = nX(n) whenever N - n2. Hence, from Ogg [17, Introduction], we 
get a(t) = t-3/2a(t- ) 

F(s) = [0 a(t)(ts + t3/2 -s) dt 

___ ___'n V-(nf u du. L(1 X)= (n)exp (- ?+2 JX(n) /D e d 
n>1 

nD 
In>1 ~ r 

- 

We note that this expression for L(1, X), combined with the fact that I X(n) I 
< 1, and a comparison of series with integrals yields Hua's result quoted in [10, 
Chapter 2]: L(1, X) < Log(aDI) + 1 (the Log(aDI) term coming from the 
first sum, and the constant term from the second sum). 

Then, with S(n) = En=, X(k), we have 

k X (n) 7rn2 ~ ~~~~~(n+lI) -v 7r/IJDI 2 
L( E n e px -DI ) + 2I ZS(n) e-u du. 

n>1 
nD 

In>1 ~ r 
- 

As there exists c E (a, b) such that fb f = (b - a)f(a) + (b-a)2 f'(c), we have 

0 < eJ(n+)/n2I/lDI e u2 du < ( (n + l)e-n2/IDI 

Since IS(n)l < n, using a comparison of series with integrals, we get 

~(n) (7rn2\ n __2 
LO , X) () exp (- IDI + 2 7DI , S(n) exp (- D) 

n>1 
nD D 

n>1 
D 

? (1+8(D)). 

Thus, another comparison of series with integrals provides us with: 

Theorem 1. Let k : Q(1/1T), Q(x/T3) be an imaginary quadratic field with 

discriminant D < 0 and character X. Then, with M = 1 + [V/ DI Log(jDi)/27z] 
(where [x] denotes the greatest integer less than or equal to x), the class number 
h(k) of k is the nearest integer to 

z (~~~~(n) 
n___n2__D 

h(k) def aDI<n<M E n ? ) f()) e-nD/IDI 

with the same parity as h(k) . Indeed, we have 

lh(k) - h(k)l <-+ 2 + e(D), with lim e,(D) = 0 (effective). nr 2 IDF-*+coo 

Remark. If one uses this formula to calculate the class number of k, then h(k) 

approximates h(k) much more accurately than the error bound given above 
would suggest. Indeed, empirically, the error tends to zero as IDI tends to 
infinity. 
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Numerical application. Let k = Q(f>) with p prime and p 1 (mod 4). 
The 2-Sylow subgroup of the ideal class group of k is Z/2nZ for some n > 1, 
such that n = 1 if and only if p _ 5 (mod 8). We searched for the primes 
p E 1 (mod 4), p < 8- 107 O such that the ideal class group of k is a cyclic 
2-group Z/2nZ, n > 1, i.e., such that h(Q( -p)) = 2n, n > 1. The imagi- 
nary quadratic fields of class number two were determined by Stark [20], hence 
h(Q(V -p)) = 2 if and only if p = 5, 13, or 37. Hence, we only sieved 
the primes p 1 (mod 8) less than or equal to 8- 107 such that the prime 
ideals above the smallest noninert prime in k/Q have order 2k in the ideal 
class group, for some k > 0 (thanks to Hua's upper bound h(Q( -p)) < 
2Vp (Log(v/4) + 1) we only have to check whether p2 iS principal or not for 
some i such that 1 < 2i < 2(Log(/4p) + 1)) . Using Theorem 1, we then cal- 
culated the class numbers of these fields to get 1997 fields for which h(k) = 2n, 
n > 2. Our computations provide us with Table 1. 

TABLE 1 

n Pmin((n) Nn Pmax (n) 

1 5 3 37 

2 17 4 193 

3 41 7 577 

4 257 11 3217 

5 521 22 16417 

6 4481 22 49393 

7 9521 62 340657 

8 21929 87 1259017 

9 72089 186 4942177 

10 531977 319 19277017 

11 1256009 588 75661657 

12 5014169 513 79986073 

13 20879129 175 79566209 

14 70993529 1 70993529 

Pmin(n) def Min{p; p 1 (mod 4), h(k) = 2n, p < 8107}, 

def Nn d( Ma ;1p(; p l (mod 4)k, h(k) = 2, < -17} 

Pmax(n) = Max{p; p =- I (mod 4), h(k) = 2n,p<8-17 

We decided to limit our numerical computations to p < 8- 1 07 because 
Theorem 1(2) of Louboutin [13] (which assumes the generalized Riemann hy- 
pothesis) provides us with the lower bound h(Q( -p)) > 512, p > 8 107i. 

Hence, Table 1 is complete up through n = 9 (under the assumption of the 
generalized Riemann hypothesis). 
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2. CLASS NUMBERS OF QUADRATIC EXTENSIONS 

OF A PRINCIPAL IMAGINARY QUADRATIC FIELD 

Let k be any one of the nine principal imaginary quadratic fields, and let 
Rk be its ring of integers and D its discriminant. Let K/k be a quadratic 
extension with relative discriminant 35 = ih/k, and let A = l1K/k12 . In our first 
theorem below, we assume that there exists a primitive character X defined on 
Rk, with conductor the ideal (5K/k), taking the value +1 on the finite units 
group Uk of Rk (with cardinality w(k) equal to 2 whenever k $ Q(i), Q(j) 
(where j = (-1 + iV3)/2), equal to 4 whenever k = Q(i), and equal to 6 
whenever k = Q(j)). We assume that the factorization UK(S) -k(s)L(s, X) 
is valid. We finally define 

a(t) - X(z) exp K-X2t) and E(x)-.[ e dt 
zERkAD /i t 

Proposition A. There holds 

VA-I DI 1 0 dt 
( \/2 )rF(s)L(s, X) = w(k) I a(t) t v Re(s) > 0, 

a(t) = Ite 

VA__ ____s 
dt 

( IDI)rF(s)L(s, X) w(k) ajo(t)(tS + t -S) s E C. 

Theorem 2. Let K be a quartic field that is a quadratic extension K/k of a 
principal imaginary quadratic field k. Let R(K) be the regulator of K. We 
have the following integral evaluation of the class number h(K) of K: 

h(K)= I DIL(l, X) 
27nR(K) 

1 E J 2,ZIZI2 A2 exp(-27rIzI2/V AIIlj 
w(k)R(K) zERk ()E AID 2IrlzI2/A IDI J 

zER0 

whenever K $ Q(C,), n = 8, 10, or 12, and h(K) = 1 whenever K = Q(C,), 
n = 8, 10, or 12. 

Our main purpose of giving Theorem 2 is to provide an efficient way to 
calculate the class numbers of these quadratic extensions (see the numerical 
examples below). The regulator R(K) can be calculated using Amara's [1] 
techniques; then Theorem 5 will provide us with the computation of %(z). 

Theorem 3. With effective 0(1) and e(A) we have: 

(a) L(l, X) < 2 
7> Log(4v-A) + O(1), 

-w(k) IDI 

(b) h(K)R(K) < ? k)4Log(V)(I+ (A)) w (k) 

h(K) ? N/ki-( ? (A)) with lim c(A) = 0. 
w~ (k)A - +o 



L-FUNCTIONS AND CLASS NUMBERS 217 

These upper bounds do not depend on the discriminant of k and greatly im- 
prove the general upper bound h(K)R(K) = O( JDK/QJ Log'-' (I DK/Q ) ), with 
K a number field of degree n and with discriminant DK/Q (see notes of Chapter 
VIII in [ 1 6]). 

Remarks. 1. We first note that Hua's result quoted above provides us with 
the upper bound h(k)R(k) < IVDPLog(v?P)(1 + e(D)), for k a real quadratic 
field with discriminant D > 0. Thus, as w (Q) = 2, our result above is a 
generalization of this well-known upper bound for the class numbers of real 
quadratic fields. 

2. Let K = k+k, k+ = Q(fii), k_ = Q(/ -d), with d > 1 a squarefree 
integer. Thus, k = Q(i) . Let x+, x_, and x be respectively the characters of 
the extensions k+/Q, k_/Q, and K/Q(i). Hua's result is 

L(1, x+) = O(Log(d)), L(1, X-) = O(Log(d)), 

while Theorem 3 gives L(1, x) = O(Log(A)) = O(Log(d)) (as 16A= IDK/QI= 

4Dk+/QlDk /Q ) . Now, it is well known that L(1, x) = L(1, X+)L(1, x-) (see 
[5]), which provides us with the upper bound L(1, X+)L(1, x-) = O(Log(d)). 
Hua's result gives only L(1, X+)L(1, x-) = O(Log2(d)) and therefore is not 
the best result one could expect. Indeed, under the generalized Riemann's hy- 
pothesis one has L(1, x+) = O(LogLog(d)) and L(1, x-) = O(LogLog(d)), 
thus providing us with L(1, x) = O(Log2(Log(d))). 

Proof of Proposition A. The first integral representation is easily proved, using 

L(s, -) = x (I) - 1 x (z) _ 1 x (z) 
-f %) E ,Nk/Q(I)s w(k) ZE Nk/Q((z))s w(k) >E1 Iz2 ICRk kQIsZERk Z ERk 

I$0 z#0 z#0 

From the functional equations satisfied by the zeta functions CK and Ck, we 
get that f: s I-, (27r/AIDI)-sF(s)L(s, x) remains unchanged by s ~-4 1 - s. 
Moreover, f(s) =w (uk) En>, an/ns with an = EzERk, VI2=n x(z). Hence, from 

Ogg [17, Introduction], we get that a() = ta(t) . El 

Proof of Theorem 2. Since SK has 47z2R(K)h(K)/w(K) DK/Ql as residue at 
s = 1 and Ck has 27zh(k)/w(k) JDk/QJ as residue at s =1 , and since CK(S) 

ck(s)L(s, X), we get 

h (K) 1 
I w (K) DK/QL(I X)% 27zR(K) w(k) Dk/Q 

Moreover, IDK/QI = IeK/k 12 I Dk/Q 12 = AD2, hence 

h(K) = VA Kiw ( K) LO, x) 
27zR(K) w(k) 

Since w(K) = w(k), except when K = Q((n) , n = 8, 10, or 12 with h(K) =1 
in these three cases, we get the desired result. o 



218 STEPHANE LOUBOUTIN 

Proof of Theorem 3. The assertions of Theorem 3 are a consequence of the 
following lemma. 

Lemma A. With effective error terms, we have 

(a) Z exp(-27rI z2/ VA wDD vrAL og( v) + Ov') 
zERk 27r 1Z 12/v A- D15 
z#O 

(b) E v(2zz) + O(Log(v'A)) 
zERjk 
z#O 

(c) R(K) > 2 Log 
A 1/4 + (R2/2 ( 4))1/2 

Proof of Lemma A. The function 0(x) = EzERk exp(-xlz12) is the theta func- 
tion of the lattice Rk with fundamental volume V = 1 k . Thus, 

7t2 2n 7t 72 .Ths 

0 (x) = xV0(xV) x + xV ( kxV2) ) 

+ 0(1) 

whenever xF-* 0+. 
Now, f(x) = EZERk z#oexp(_XI Z2)/IXlz is such that (xf((x) = 1 - 

0(x) = -27r/x/ D1 + 0(1). Thus, xf(x) = -(27r1/V/]DT)Log(x) + 0(1) and 
we obtain (a) by setting x = 27r/ w. 

Then, g(x) = ZZERk, zoE(xlzI2) is such that g'(x) = .(I - 6(x)) = 

-27r/x2V/fiT + XO(1). Thus, g(x) = 27r/xv/-T + O(Log(x)), and we obtain 
(b) by setting x = 27r/ A_DI. 

To prove (c), let q = (a + bv'J)/2 be a fundamental unit of K. Then q = 
bx/b(l + a/bVJ)/2 and NK/k(q) - (a2 - 5b2)/4 E {?1, ?i}, i.e., (a/bx/-)2 - 

1 ? 4i/b26 or (a/bV'j)2 = 1 ? 4/b265. The regulator remains unchanged when 
b is turned into -b, so, if vT7 is the usual holomorphic determination 
of the square root defined for Iz < 1 by means of its power series, we can 
assume that either a/bVJ_ = (1 ? 4i/b23)'/2, or that a/bx/d = (1 ? 4/b23)'/2 . 
Since ( + v'I )/21 > (1 + 1 -zI)/2 and R(K) = I Log(IqK12)1, we get the 
result. 0 

We now show that there exists a character X satisfying the assumptions made 
immediately before Proposition A, we explain how one can calculate x(z), 
z E Rk, and we give numerical applications. 

Theorem 4. Let k be a principal imaginary quadratic field, let K/k be a qua- 
dratic extension with relative discriminant 5K/k, and let [!Lk I be the symbol 
defined by [OK/k] = -1, 0, or +1 according as the prime ideal P is inert, is 
ramified, or splits in k/Q. Moreover, [/k] is extended multiplicatively to the 
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integral ideals of k. Then, with (z) being the principal ideal zRk, 

{Rk "{-1, 0, +1}, 

z Z x(Z) = [iK] 

is a primitive character defined on Rk with conductor the ideal K/k) , for which 
SK(S) = Cks)L(s, x), andfor which x(Uk) = {+1}. 
Proof. Let FrK/k be the Frobenius automorphism of the extension K/k. Since 
the Galois group {Id, a} of K/k has order 2, and since FrK/k(P), whenever P 
is a prime ideal, has order equal to the residue class degree, then FrK/k(P) = Id 
whenever P splits, and FrK/k(P) = a whenever P is inert. Hence, FrK/k(P) 
acts by multiplication by [K/k] on V5K/k. Both symbols being multiplica- 
tive, this is still true with I any integral ideal of Rk (prime to 6K/k). Thus, 
FrK/k(I) = Id or a according as [6]/k - +1 or -1. Now, whenever K/k is a 
quadratic extension, apart from its infinite part, its conductor is equal to its dis- 
criminant (see [8, Chapter 10; 1 1, Chapter V, 2.2; 19]). Since, whenever k is an 
imaginary quadratic field, there is no ramification at the infinite places for K/k, 
the conductor of K/k is equal to the ideal @K/k). Thus, by class field theory, 
{(z), z E k, z =1 (mod (K/k))} is included in the kernel of the Frobenius 
map. But this being equivalent to X(z) = X(z'), z _ z' (mod (K/k)), X iS 

thus a multiplicative function on Rk with the ideal (K/k) as group of period, 
hence a character modulo 5K/k. Since (K/k) is the conductor, this character 
X is primitive. ol 

We will say that z E Rk is odd if Nk/Q(z) = IZ12 is an odd integer, and that 
z is primitive if, for n E N*, nRk divides zRk implies n = 1. We will then 
give the tools which will enable us to calculate X (z), z E Rk . We first note that 
the symbol defined in Theorem 4 extends to a symbol [Z], z E Rk, P a prime 
ideal lying above an odd prime p, by means of [ -] = 1, + 1, or 0 according 
as x2= Z (mod P) is not solvable in Rk, is solvable in Rk, or Z E P. Let 
us note that [Zp] is well defined by the property [Z] _ Z(Nk/Q(P)-l)/2 (mod P). 
This symbol is again extended multiplicatively to the integral ideals of Rk with 
odd absolute norms. 

Theorem 5. Let z and Z be in Rk, let p be an odd prime integer in Z, and 
let (p) be the Legendre symbol. Then, 

(a) whenever p is inert in K/Q, 

[ZP)] = (Nk/Q(Z)= (Z)I 

(b) whenever p =-7r7F splits in k/Q, 

[Z] = (Tr(7Q)Tr(7rZ)) and [?*j. Z = (IZI) 

(c) whenever n E N*, n + 1, is a product of odd primes inert in k/Q, 

[Z] = (Nk/Q(Z)) = (l2) 
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(d) whenever z is primitive and odd, 

[Z] (Tr(z (Tr(Z ) and [( -)] = (IZ 12) 

Thus, whenever z is an odd integer of Rk and z = nz' with z' primitive, 
we get 

[Z] Z Z = (1Z2) (Tr(z')Tr(z'Z)) 

J() L(n)2 (zl)2 zl 

Proof of Theorem 5. In order to prove (a) and (b), we first note that they are 
both satisfied as soon as one of the symbols they involve equals zero. 

(a) Since p is inert, Rk/(p) is a finite field with p2 elements. Moreover, 
Z ~-4 Z, being a nontrivial (Z/pZ)-isomorphism of this field, is its own Frobe- 
nius, i.e., Z -= ZP (mod pRk) . Thus, 

(Z2) (Z)(p-1)/2 (Zzp)(p-1)12 Z(p2-1)/2_ [?= 1 (mod 

and [Z]= QpZ) 
(c) This is trivial as soon as (a) is known. 
(b) Since p splits, the canonical injection Z/pZ - Rk/(7) is an isomor- 

phism, and there exists n E Z such that Z -n (mod 7). Thus, [] = n 

and Tr(7) Tr(7rZ) = n Tr2(7) (mod p), implying (Tr(n) Tr(7Z)/p) = (n). 
Now, whenever n is an integer, we have []n n(P-1)/2 (mod 7) and (n) 

n(P-1)12 (mod p) . Thus, [#n =n(p) 
(d) We first show that (d) is valid whenever Z = N is an integer in Z. 

Indeed, we have 

(Tr(z)Tr(zN)) (NTr2(z) ) N = N( 
l zil l zl2 t|Z12J tp ' 7t/Z 

with p = I7I2 and where the product is taken over (not necessarily pairwise 
distinct) primes 7z dividing z. Now, by (b), 

[ = (r PTr(7N) (P) 

Hence, 

7r/Z P ) Z(7t) (Z)/ 

Now, z being primitive, the canonical projection p: Z -* Rk/(z) has kernel 
Iz12Z. Moreover, Z/1z12Z and Rk/(z) both have order Iz12, thus p: Z/ zI2Z 

Rk/(z) is an isomorphism. Hence, there exists an integer N in Z such that 
Z -N (mod zRk). But then we have 

[Z [N (Tr(z) Tr(zN) (Tr(z) Tr(zZ)) 
becauseTr(z) Tr(zN) (md HeIdZr12 s u 1l2 I 
becauseT(zZ)--T(zN) (mo IzZ . ec,w e h eie eut 
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Remarks. In our previous paper [14], we focused on the case k = Q(i), using 
the quadratic reciprocity theorem for the symbol [-] due to Dirichlet [7] (who 
derived it from the quadratic reciprocity theorem for the symbol (-)). We 
first constructed the character x of quadratic extensions of Q(i). Using this 
character and calculating Gauss' sums, we proved that x is primitive, and 
that we have an integral representation of L(s, x) from which we deduced its 
functional equation. Here, we make use of strong results such as the functional 
equations satisfied by the zeta functions of K and k, and the fundamental 
theorem of class field theory. This, without tedious calculations, enables us to 
construct our character, to show that it is primitive, and to obtain the integral 
representation of L(s, x). The more concepts, the less calculation. 

Statistical results in the case k = Q(i). Now we will study the distribution of 
the class numbers of the quadratic extensions K/k with relative discriminant 
6K/k a noninert prime in Rk, i.e., A = 15K/k 2 = p is an odd noninert prime 
in k/Q. Our task will be to extend the calculations made by Lakein [12] and 
to compare the distribution of these class numbers with the distribution of the 
class numbers of the real quadratic fields Q(v/'p), p 1_ (mod 4) prime. Note 
that if 5K/k is a noninert prime in Rk, then 5K/k is primary, i.e., congruent 
to a square modulo 4Rk (see Louboutin [15]), A _ 1 (mod 8), and h(K) is 
odd. Hence, Hecke's quadratic reciprocity theorem gives X(Z) = [Z/(5K/k)], Z 

an odd integer in Rk. Both symbols being periodic with period 5K/k, and 5K/k 

being odd, this identity is still true whenever z is not odd (z + 5K/k then being 
odd). Hence, x(z) = (Tr(n) Tr(7rZ)/p), z E Rk . This enables us to calculate 
%(z), z E Rk, in a much more efficient way than using x(z) = [K/k/(Z)]I 
Indeed, in order to use this last formula we have to find n such that z = nz', 
with z' primitive. Moreover, if 5K/k = a + i/, then a is odd, /3 is even, and 
one can check that x(z) = ((ax + fly)/p), for z = x + iy. From [14], with 
M = 3 + [A\14 v/Log(FA)/27j, we have 

lh(K) - h(K)l R(K) { Log(I) + = 
2 

LagA } 

with 

_K 1 x(z) )E( ~ + exp(-nZ 12 /V'/ R(K) z=a?ib A{ ( )z12/V J 
a>O, b>O 

Izj<M 

Thus, the nearest integer to h (K) provides us with the class number. The 
regulator R(K) = ILog( qK 12)1 is calculated using Amara's technique to get 
the fundamental unit 1K of K. Tables 2 and 3 summarize the results of our 
computations: we computed the class numbers of the first 50000 quadratic 
extensions K/Q(i) with K/Q a non-Galois quartic extension and with 5K/k an 
odd prime in Q(i). The case where 5K/k is a rational prime p _ 3 (mod 8) 
was excluded, since Dirichlet's theorem applies to show that h(K) = h(p)h(-p), 
the product of the quadratic class numbers. 

We note that this distribution of class numbers is very close to the one con- 
jectured by Cohen and Martinet [5], i.e., very close to that of the real quadratic 
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TABLE 2. Quadratics over Q(i) by ten thousands 

h 1 st 2nd 3rd 4th 5th Total % 

1 7928 7813 7781 7769 7764 39055 78.110 

3 1073 1096 1143 1125 1121 5558 11.116 

5 383 363 403 368 383 1900 3.800 

7 170 206 176 165 186 903 1.806 

9 126 134 112 131 129 632 1.264 

11 65 60 59 70 55 309 

13 47 63 50 54 52 266 

15 45 50 52 57 50 254 

17 39 32 34 35 35 175 

19 20 30 20 28 23 121 

21 15 26 28 34 23 126 

23 12 16 22 10 17 77 

25 11 19 12 18 10 70 

27 11 15 18 13 16 73 

TABLE 3. Extreme and mean values of class numbers 

N AN AN A<An h(A) hmax Amax 4 

10000 482441 4.5249..10-2 85 393161 156.76 

20000 1023041 4.5325.. 10-2 145 815401 225.75 

30000 1588673 4.5003.. 10-2 175 1538321 310.07 

40000 2166457 4.5485.. 10-2 175 1538321 310.07 

50000 2757329 4.5483.. 10-2 175 1538321 310.07 

AN = the N th prime discriminant (with A 1_ (mod 8)); hmax = the greatest 
class number of the class numbers of our fields with 17 < A < AN; Amax = the 
smallest discriminant less than or equal to AN such that h(A) = hmax . 

case with prime discriminants (see Stephens and Williams [21] for extensive 
calculations in this real quadratic case). 

We first note that our asymptotic upper bound h(K) < 1 V( 1 + e(A)) given 
in Theorem 3(b) nicely compares with the results of these computations. More- 
over, one can observe that x EA<, h(A) seems to tend to a limit as x tends to 
infinity, even though it is not quite clear to us which value one would conjecture 
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for himxO, x j<x h(A). Recall that in the case of real quadratic fields with 
prime discriminants Cohen and Martinent [5] conjectured that 

lim Z E h(Q(p))= 
I 

X-40 X 
P<x 

P=_1 [4] 

3. UPPER BOUNDS OF CLASS NUMBERS OF QUADRATIC EXTENSIONS 

OF AN IMAGINARY QUADRATIC FIELD 

We no longer assume that k is principal. Our task is to strengthen Theorem 
3(b) and prove the following result. 

Theorem 6. Let k be a given imaginary quadratic field of class number h and 
with w roots of unity. Let K be a quadratic extension of k with relative dis- 
criminant 6K/k, and let A be A = kK/kV1. Then we have the effective upper 
bound 

h(K)R(K) < kV-Log(/)(1 + e(A)) = O DK/QLog(IDK/Q )) 

As in Theorem 3, this improves the general known upper bounds of 
h(K)R(K). 

def 
Proof. Since f(s) = CK(S)/ k(S) is such that 

f(1) 27R(K)h(K) w(K) 
AD Ih(k) w (k) 

we have 

h(K)R(K) = 2Lf(1)h(k)w (K) DI 

Let x be the completely multiplicative function defined on the set of integral 
ideals of k by means of %(P) = -1, 0, or +1 according as the prime ideal P 
or Rk is inert, is ramified, or splits in K/k. Then, 

f(s) = fi 1 
P prime ideal of k X (P) /Nk/Q(P)s 

E X(I) E_ an 
- ZNi~,,oNI)s = n fs 
I integral ideal of kk/Q( n>1 

I# O 

with 

an d=f E x(I) 

I integral ideal of k 
with Nk/Q(I)=n 

Let ,B(n) be the number of integral ideals I of k such that Nk/Q(I) = n. 
Then, Ian I </3(n) = si/n Xim(J) with Xim being the character of the imaginary 
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quadratic field k. As in Theorem 2, we have 

f(nexp ( ) + 2/ anE ( 
n>1n I IA-1D- VA-ID-1 n>1 Vrn ID 

Hence, f (1) < B(C) + F(C) with 

B()def f(nl) e-xdef C def 2 7r 
B(x)=L , e nx, EF(x) = x L: /B(n)E(nx), C- 

n>1i n>1 VAJIDJ1 

To complete the proof, we need the following two lemmas. 

Lemma B. There holds B(x) = -L(1, Xim)Log(x) + 0(l), x O+ 

Proof. We have 

Jx (Zdn>t 

and 

Z/(n)e-t= Z (ZEXim(m) e-nt 
n>1 n>1 \rn!/n 

= Z Xinm(m) ( ekt) = Xim() 
m>1 k1 m/>1 

Thus, 

B (x) + L(1, Xim) Log(x) = s Xim(f)J ( ent1 mt ) 
rn>1 

+ E Ximtm] emt 1 
rn>1 

If S(m) = Ik=i Xim(k), m > 1, and S(O) = 0, then using Xim(m) = S(m) - 
S(m - 1) and using the trivial upper bound IS(m)l < IDI, we get the desired 
result: 

IB(x) + L(1, Xim) Log(x) l < AID 
with 

A =j (} t - e ) dt? j e 1t 

i.e., with A = 2 Log(e/ (e - 1)) . E1 

Lemma C. There holds F(x) = 0(1). 
Proof. We have 

F(x) = x ,1 r/ Xim(m)) E(nx) = x E Xim(m) E(nmx) 
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Now, 

ZE(nmx) J e-nt =f ? . EE(nmx) = , | e t =mxet - I t 
n>1 n>1 mx tJ xel 

Thus, 

O 
< F(x) < LS(m)lx et-1 t 

m>1 
e 

< s m) <___ 

m>1 m m+1 

Note that using 

(m+l)x 1 dt 1 1 
lim x I- - 

xI Ji+ nx et-l t m m+1' 

we can get the more accurate estimate 

F(x) = L(1, Xim) + E(x). 

The effective upper bound 

h(K)R(K) < -vK Log(v ) (1 + E (A)) 

now follows from L(1, xim) = (27r/w1jDj)h, and w(K) =w(k) whenever 
K5$Q(4n), n=8,10,orl2. El 

Our proof, which also applies in the situation studied by Barrucand, Loxton, 
and Williams [3], would have provided them with upper bounds half as large 
as the ones they obtained. 

Theorem 7. Let k be a given imaginary quadratic field of class number h and 
with w roots of unity. Let R1, . .. , Rr, II, . .. , Is be r+s given prime distinct 
ideals of k. Let K be a quadratic extension of k with relative discriminant 6K/k, 

and let A be A = 16K/k12 If each Ri is ramified and each Ij is inert in K/k, 
then we have the effective upper bound 

h(K)R(K) < {I1 (1 Nk/Q(Ri))} 
(S(N 

(I 
1 

2J 

Thi ip Nk/Q (1e T + r 6w 
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def Proof. With Ek = {I; I integral ideal of k prime to each Pi, 1 < i < k}, let 
us define 

an = bn(k) = S 
(() 

Nk/Q(I)=n IEEk and Nk/Q(I)=n 

an= E IX(I)L, bn(k) = E IX(I)I. 
Nk/Q(I)=n IEEk and Nk/Q(I)=n 

Let Pi, 1 < i < k, be k distinct prime ideals of k. Our proof relies upon 
the two following results, each of which is proved by induction on k: 

( {j ( N (Pi) (} nC bn(k) enC +(1), 

(b) {fl( Nk/Q(PI)) } 
- ) E n 

i=1 Nk/Q(Pi) \n>1 
n 

n>1 
n% 

For example, the first result, where we write N(I) instead of Nk/Q(I) when- 
ever I is an integral ideal of k, is proved as follows. Assume it is true for k. 
Then we have 

{k+( x(Pi) }( eaneflC 

(1 (Pkt )_ ) 
(I) e)) + 0( 1e) 

N(Pi) IEk N( ) 

- S > kN(l) k+) (eN(b)C - eN(I)N(Pk)C) + 0(1) 

- 5b,(k+Nl)flcPk+ 

n>l 

with 

P - N(Pk +l) E n (1) (e-nC _- 00 

B(C) - B(N(Pk+l)C) 
N(Pk+l ) 

From Lemma B we thus have R = ( 1), and we get the result for k + 1. 
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Now Theorem 7 follows from 

{ (1 Nk/Q(Pi))fl 

- {k (- Nk/Q(Pj)) } (Zean + 

-EZ bn(k)enCQ+0(1) ZE bn(k) e-nC + 0(1) 
n>1 n>1 

- {k (i - Nk/Q (P)} (n> n 

{ (i-Nk/Q(Pi)) }9 1n) e-nC)+ 0(1) 

= 
{ H( 1-N( P ) } ( l 

im ) Log( v/A-) + 0( l ) C 

Numerical example. We take k = Q(xff2) and K = k(v'7) with d = m2 +2 2 
(m - V)(m + ) = (a + b )2 + 2 = a2 - 2b2 + 2 + 2abf7 a squarefree 
integer in Z[VZ2] (hence a is odd). Then, 7K = (m + VW-/)/ v/'2 is a unit in 
RK with NK/k( K) = +? , and one can easily see that it is a fundamental unit of 
K, that RK = Rk[qK], and that 6K/k = -2d. Moreover, we may assume that we 

have a > 0, b > 0 (since k(-V') is isomorphic to k(v/d)). Now, whenever 
z E Rk has even absolute norm Nk/Q(z), then x(z) = 0, and whenever z has 
odd absolute norm, then x(z) = [AK/k/(Z)]. Thus, we can calculate x(z), and 
h(K), with the help of Theorem 2. Indeed, we have already explained in [14] 
how to choose M such that the nearest integer to 

de 1 7(z1F Z_12 exp (- 2 1Z 12 / VAI~DI2) h(K) d w(kzR(K) { (E p + 
w k 

RK)zERk V/ A ID~ / 2 1Z 12/ I AD- J 
Z540 

zl<M 

yields the class number h(K), using the power series expansion E(x) = -y - 
Log(x) - En>1(-1)nxn/nn! (with y being Euler's constant) to get the values 

E(27rjzj2/ /Dj>). We will give the results of our computations in Table 4, i.e., 
the values of h(K), provided 

A = 16K/k12 = 4(a2 + 2(b - 1)2)(a2 + 2(b + 1)2) < 3 105 . 

The aim of these computations is to show that Theorem 7 produces good upper 
bounds of class numbers. Let P3 = (1 + V/=5) and P'3 - (1 - f7) be the two 
prime ideals of Rk lying above (3). Since d is assumed to be squarefree in 
Z[V'12], neither (P3)2 nor (p3)2 divides d. Hence, 33 does not divide A. 

Lemma. Assume that d is squarefree in Z[V'-]. Then, 
(a) 3 does not divide A if and only if 3 divides a and 3 divides b. In this 

case, P3 and P'3 are inert in K/k. 
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TABLE 4 

a b A 2-rank h (K) Mr,,r (A) Mr,i (A) Ml,1 (A) 

1 2 228=4 3 19 1 2 1.3 

3 1 612=4.32.17 2 4 2.7 

3 3 2788=4 17.41 2 4 3.3 

5 1 3300=4 3 52 . 11 2 4 4.8 

1 4 3876=4 3- 17.19 2 4 5.2 

5 3 7524=4.32.11.19 3 8 9.6 

1 5 9636= 4 - 3 11 * 73 2 8 8.2 

7 1 11172=4.3.72.19 2 8 8.8 

5 4 12900=4.3.52.43 2 8 9.5 

7 2 13668=4-3.17.67 2 8 9.7 

5 5 22116 = 4 - 3 . 19 * 97 2 12 12.4 

3 6 25252=4 59.107 1 6 9.9 

9 2 32868 = 4 . 32 . 11 . 83 3 16 20.1 

5 6 36900 = 4 . 32 . 52 . 41 3 16 21.3 

1 7 37668 = 4 - 3 . 43 . 73 2 8 16.2 

9 3 40228=4 89 113 2 8 12.5 

9 4 51876= 4 32 . 11 . 131 3 16 25.3 

1 1 1 62436= 4 . 3 112 . 43 3 16 20.8 

1 1 2 68388= 4 - 3 41 * 139 2 16 21.8 

9 5 69156=4.32.17.113 3 24 29.2 

3 8 73188= 4 32 . 19 . 107 3 24 30.1 

5 8 92004=4-3.11 17.41 3 16 25.3 

9 6 93796= 4 131 - 179 1 14 19.1 

1 9 103716=4.32.43.67 3 32 35.8 

3 9 114532= 4 11 * 19 * 137 2 12 21.2 

13 1 119652=4.3 132.59 2 20 28.8 

7 8 124068= 4 . 3 72 . 211 2 20 29.4 

9 7 127908 = 4 . 32 . 11 . 17 . 19 4 32 39.7 

13 3 142308 = 4 . 32 . 59 . 67 3 24 41.9 

13 4 163812=4-3311 17.73 3 24 33.7 

3 10 171684= 4 32 . 19 . 251 3 24 46.0 

7 9 176292= 4 32 . 59 . 83 3 32 46.7 

1 1 7 192228= 4 - 3 83 . 193 2 28 36.6 

13 5 193764= 4 - 3 67 . 241 2 20 36.7 
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TABLE 4 (continued) 

a b A 2-rank h (K) Mr,,r (A) Mr, i (A) MI, I (A) 

5 10 199716 = 4 * 3 * 11 * 17 * 89 3 24 37.2 

15 1 209700= 4 .32 . 52 . 233 3 40 50.9 

13 6 233892= 4 .32 . 73 . 89 3 40 53.7 

9 9 234916= 4 *11 * 19 281 2 16 30.3 

15 3 239524 = 4 * 233 * 257 2 24 30.6 

7 10 245604 = 4 * 3 * 97 * 211 2 28 41.3 

1 1 8 247908 = 4 * 3 * 73 * 283 2 20 41.5 

(b) 3 divides A and 32 does not divide A if and only if 3 does not divide a 
and 3 does not divide b. In this case, P3 is ramified in K/k and P'3 is inert in 
K/k, or P3 is inert in K/k and P'3 is ramified in K/k. 

(c) 32 divides A if and only if 3 divides a and does not divide b, or 3 does 
not divide a and divides b. In this case, P3 and P'3 are ramified in K/k. 

Proof. We have A _ (a2-l)(b2-1) (mod 3) and [3/P3] = (((a-b)2-1)/3) = 0 
or -1, and [8/P'3] = (((a + b)2 _ 1)/3) = 0 or -1 . We thus get the desired 
result. For example, 32 divides ( if and only if P3 and P' divide (, i.e., if 
and only if [8/P3] = [8/P'3] = 0, i.e., if and only if 3 does not divide a + b 
and does not divide a - b, i.e., if and only if 3 divides a but does not divide 
b, or 3 does not divide a but divides b. o 

Set M(A) = 2',' Mr, r (A) = g /, Mr, i (A) = ,v and Ml, i (A) = 
1 V Since the prime ideal (V -2) of Rk is ramified in K/k, Theorem 7 and 1F6 

R(K) = (1 + e(A)) Log(4/) provide us with the following upper bounds: 

h(K) < M(A)(1 + e(A)), 

(a) h(K) < Mr,r(A)(1 + e(A)) whenever P3 and P'3 are ramified in K/k, 
(b) h(K) < Mr, i(A)(1 + e(A)) whenever one of the prime ideals of Rk lying 

above (3) is ramified in K/k while the other is inert in K/k, 
(c) h(K) < MI,i(A)(I + e(A)) whenever P3 and P'3 are inert in K/k. 
In Table 4, we give the values of these asymptotic upper bounds according as 

we are in case (a), (b), or (c). Observe that these upper bounds nicely compare 
with h(K), and compare much better with h(K) than the general upper bound 
M(A) of Theorem 6. Moreover, this table agrees with our previous paper [15, 
Corollary 10(b)], i.e., with our determination of the 2-rank of the ideal class 
group of quadratic extensions of principal imaginary quadratic fields: if JK/k 
has t distinct prime factors in Z[, -2], then the ideal class groups of the 
quadratic extensions of Q(v-2) have 2-rank t - 1 if none of the odd prime 
divisors of A is congruent to 3 modulo 8, and have rank t- 2 otherwise (in our 
table, the bold prime factors of A are those that are congruent to 3 mod 8). 
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